Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Immunol ; 15: 1167362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476240

RESUMO

Introduction: Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis, but the sources of citrullinated antigens as well as which peptidylarginine deiminases (PADs) are required for their production remain incompletely defined. Here, we investigated if macrophage extracellular traps (METs) could be a source of citrullinated proteins bound by APCAs, and if their formation requires PAD2 or PAD4. Methods: Thioglycolate-induced peritoneal macrophages from wild-type, PAD2-/-, and PAD4-/- mice or human peripheral blood-derived M1 macrophages were activated with a variety of stimulants, then fixed and stained with DAPI and either anti-citrullinated histone H4 (citH4) antibody or sera from ACPA+ or ACPA- rheumatoid arthritis subjects. METs were visualized by immunofluorescence, confirmed to be extracellular using DNase, and quantified. Results: We found that ionomycin and monosodium urate crystals reliably induced murine citH4+ METs, which were reduced in the absence of PAD2 and lost in the absence of PAD4. Also, IgG from ACPA+, but not ACPA-, rheumatoid arthritis sera bound to murine METs, and in the absence of PAD2 or PAD4, ACPA-bound METs were lost. Finally, ionomycin induced human METs that are citH4+ and ACPA-bound. Discussion: Thus, METs may contribute to the pool of citrullinated antigens bound by ACPAs in a PAD2- and PAD4-dependent manner, providing new insights into the targets of immune tolerance loss in rheumatoid arthritis.


Assuntos
Ácidos Aminossalicílicos , Artrite Reumatoide , Armadilhas Extracelulares , Humanos , Camundongos , Animais , Desiminases de Arginina em Proteínas/metabolismo , Autoanticorpos , Proteína-Arginina Desiminase do Tipo 4 , Ionomicina/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo
2.
Cell Commun Signal ; 22(1): 118, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347539

RESUMO

BACKGROUND: Disruption of Ca2+ homeostasis after calcium electroporation (CaEP) in tumors has been shown to elicit an enhanced antitumor effect with varying impacts on healthy tissue, such as endothelium. Therefore, our study aimed to determine differences in Ca2+ kinetics and gene expression involved in the regulation of Ca2+ signaling and homeostasis, as well as effects of CaEP on cytoskeleton and adherens junctions of the established endothelial cell lines EA.hy926 and HMEC-1. METHODS: CaEP was performed on EA.hy926 and HMEC-1 cells with increasing Ca2+ concentrations. Viability after CaEP was assessed using Presto Blue, while the effect on cytoskeleton and adherens junctions was evaluated via immunofluorescence staining (F-actin, α-tubulin, VE-cadherin). Differences in intracellular Ca2+ regulation ([Ca2+]i) were determined with spectrofluorometric measurements using Fura-2-AM, exposing cells to DPBS, ionomycin, thapsigargin, ATP, bradykinin, angiotensin II, acetylcholine, LaCl3, and GdCl3. Molecular distinctions were identified by analyzing differentially expressed genes and pathways related to the cytoskeleton and Ca2+ signaling through RNA sequencing. RESULTS: EA.hy926 cells, at increasing Ca2+ concentrations, displayed higher CaEP susceptibility and lower survival than HMEC-1. Immunofluorescence confirmed CaEP-induced, time- and Ca2+-dependent morphological changes in EA.hy926's actin filaments, microtubules, and cell-cell junctions. Spectrofluorometric Ca2+ kinetics showed higher amplitudes in Ca2+ responses in EA.hy926 exposed to buffer, G protein coupled receptor agonists, bradykinin, and angiotensin II compared to HMEC-1. HMEC-1 exhibited significantly higher [Ca2+]i changes after ionomycin exposure, while responses to thapsigargin, ATP, and acetylcholine were similar in both cell lines. ATP without extracellular Ca2+ ions induced a significantly higher [Ca2+]i rise in EA.hy926, suggesting purinergic ionotropic P2X and metabotropic P2Y receptor activation. RNA-sequencing analysis showed significant differences in cytoskeleton- and Ca2+-related gene expression, highlighting upregulation of ORAI2, TRPC1, TRPM2, CNGA3, TRPM6, and downregulation of TRPV4 and TRPC4 in EA.hy926 versus HMEC-1. Moreover, KEGG analysis showed upregulated Ca2+ import and downregulated export genes in EA.hy926. CONCLUSIONS: Our finding show that significant differences in CaEP response and [Ca2+]i regulation exist between EA.hy926 and HMEC-1, which may be attributed to distinct transcriptomic profiles. EA.hy926, compared to HMEC-1, displayed higher susceptibility and sensitivity to [Ca2+]i changes, which may be linked to overexpression of Ca2+-related genes and an inability to mitigate changes in [Ca2+]i. The study offers a bioinformatic basis for selecting EC models based on research objectives.


Assuntos
Acetilcolina , Cálcio , Cálcio/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Angiotensina II/farmacologia , Bradicinina/farmacologia , Ionomicina/metabolismo , Ionomicina/farmacologia , Tapsigargina/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Perfilação da Expressão Gênica , Eletroporação , Trifosfato de Adenosina/metabolismo
3.
Eur J Immunol ; 53(12): e2250360, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37736882

RESUMO

In the present study, we found that methiothepin (a nonselective 5-hydroxytryptamine [5-HT] receptor antagonist) inhibited antigen-induced degranulation in rat basophilic leukemia cells and mouse bone marrow-derived mast cells. Although antigen stimulation induces release of histamine and serotonin (5-HT) by exocytosis and mast cells express several types of 5-HT receptor, the detailed role of these receptors remains unclear. Here, pretreatment of cells with methiothepin attenuated increased intracellular Ca2+ concentration, phosphorylated critical upstream signaling components (Src family tyrosine kinases, Syk, and PLCγ1), and suppressed TNF-α secretion via inhibition of Akt (a Ser/Thr kinase activated by PI3K)and ERK phosphorylation. Furthermore, it inhibited PMA/ionomycin-induced degranulation; this finding suggested that methiothepin affected downstream signaling. IκB kinase ß phosphorylates synaptosomal associated protein 23, which regulates the fusion events of the secretory granule/plasma membrane after mast cell activation, resulting in degranulation. We showed that methiothepin blocked PMA/ionomycin-induced phosphorylation of synaptosomal associated protein 23 by inhibiting its interaction with IκB kinase ß. Together with the results of selective 5-HT antagonists, it is suggested that methiothepin inhibits mast cell degranulation by downregulating upstream signaling pathways and exocytotic fusion machinery through mainly 5-HT1A receptor. Our findings provide that 5-HT antagonists may be used to relieve allergic reactions.


Assuntos
Leucemia , Mastócitos , Ratos , Camundongos , Animais , Metiotepina/metabolismo , Metiotepina/farmacologia , Quinase I-kappa B/metabolismo , Serotonina/farmacologia , Serotonina/metabolismo , Medula Óssea/metabolismo , Ionomicina/metabolismo , Ionomicina/farmacologia , Antagonistas da Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Degranulação Celular , Quinase Syk/metabolismo , Receptores de IgE
4.
Immunol Invest ; 52(6): 703-716, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37401665

RESUMO

OBJECTIVES: Systemic sclerosis (SSc) is a rare rheumatic disease characterized by vascular damage, dysregulated immune response, and fibrosis. Interleukin-11 (IL-11) is upregulated in SSc. This study aimed to investigate the pathological and therapeutic role of the IL-11 trans-signaling pathway in SSc. METHODS: Plasma IL-11 level was evaluated in 32 patients with SSc and 15 healthy controls, while the expression levels of ADAM10, ADAM17, IL-11, IL-11 Rα, or IL-11 co-stained with CD3 or CD163 in the skin of SSc patients and healthy controls were analyzed. Fibroblasts were treated with IL-11 and ionomycin to evaluate the profibrotic effect of IL-11 trans-signaling pathway. TJ301 (sgp130Fc) and WP1066 (a JAK2/STAT3 inhibitor) intervention groups were set up to investigate the antifibrotic effect of targeting IL-11. RESULTS: Levels of plasma IL-11 were extremely low in most SSc patients and healthy controls. In contrast, levels of IL-11, IL-11 Rα, and ADAM10, but not ADAM17, were significantly elevated in the skin of SSc patients. Moreover, the numbers of IL-11+ CD3+ cells and IL-11+ CD163+ cells were increased in the skin of SSc patients. Besides, IL-11 and ADAM10 were also elevated in the skin and pulmonary of bleomycin-induced SSc mouse. Fibroblasts co-stimulated with IL-11 and ionomycin showed increased expression of COL3 and phosphorylation of STAT3, which could be inhibited by TJ301 or WP1066. TJ301 also ameliorated skin and lung fibrosis in BLM-induced SSc mouse. CONCLUSIONS: IL-11 induces fibrosis in SSc by regulating the trans-signaling pathway. Blockage of sgp130Fc or inhibition of the JAK2/STAT3 pathway could ameliorate the profibrotic effect of IL-11.


Assuntos
Interleucina-11 , Escleroderma Sistêmico , Humanos , Animais , Camundongos , Interleucina-11/efeitos adversos , Interleucina-11/metabolismo , Ionomicina/efeitos adversos , Ionomicina/metabolismo , Fibrose , Escleroderma Sistêmico/tratamento farmacológico , Pele/patologia , Transdução de Sinais , Fibroblastos/patologia , Janus Quinase 2/efeitos adversos , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo
5.
ACS Macro Lett ; 12(8): 1085-1093, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37466277

RESUMO

T cells play a critical role in the adaptive immune response of the body, especially against intracellular pathogens and cancer. In vitro, T cell activation studies typically employ planar (two-dimensional, 2D) culture systems that do not mimic native cell-to-extracellular matrix (ECM) interactions, which influence activation. The goal of this work was to study T cell responses in a cell line (EL4) and primary mouse T cells in three-dimensional (3D) bioprinted matrices of varied stiffness. Cell-laden hydrogels were 3D bioprinted from gelatin methacryloyl (GelMA) using a digital light processing (DLP)-based 3D bioprinter operated with visible light (405 nm). Mechanical characterization revealed that the hydrogels had pathophysiologically relevant stiffnesses for a lymph node-mimetic tissue construct. EL4, a mouse T cell lymphoma line, or primary mouse T cells were 3D bioprinted and activated using a combination of 10 ng/mL of phorbol myristate acetate (PMA) and 0.1 µM of ionomycin. Cellular responses revealed differences between 2D and 3D cultures and that the biomechanical properties of the 3D bioprinted hydrogel influence T cell activation. Cellular responses of the 2D and 3D cultures in a soft matrix (19.83 ± 2.36 kPa) were comparable; however, they differed in a stiff matrix (52.95 ± 1.36 kPa). The fraction of viable EL4 cells was 1.3-fold higher in the soft matrix than in the stiff matrix. Furthermore, primary mouse T cells activated with PMA and ionomycin showed 1.35-fold higher viable cells in the soft matrix than in the stiff matrix. T cells bioprinted in a soft matrix and a stiff matrix released 7.4-fold and 5.9-fold higher amounts of interleukin-2 (IL-2) than 2D cultured cells, respectively. Overall, the study demonstrates the changes in the response of T cells in 3D bioprinted scaffolds toward engineering an ex vivo lymphoid tissue-mimetic system that can faithfully recapitulate T cell activation and unravel pathophysiological characteristics of T cells in infectious biology, autoimmunity, and cancers.


Assuntos
Matriz Extracelular , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacologia , Ionomicina/metabolismo , Linhagem Celular , Células Cultivadas , Matriz Extracelular/metabolismo
6.
Redox Biol ; 64: 102784, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356135

RESUMO

Neutrophil extracellular traps (NETs) are web-like structures of DNA coated with cytotoxic proteins and histones released by activated neutrophils through a process called NETosis. NETs release occurs through a sequence of highly organized events leading to chromatin expansion and rupture of nuclear and cellular membranes. In calcium ionophore-induced NETosis, the enzyme peptidylargine deiminase 4 (PAD4) mediates chromatin decondensation through histone citrullination, but the biochemical pathways involved in this process are not fully understood. Here we use live-imaging microscopy and proteomic studies of the neutrophil cellular fractions to investigate the early events in ionomycin-triggered NETosis. We found that before ionomycin-stimulated neutrophils release NETs, profound biochemical changes occur in and around their nucleus, such as, cytoskeleton reorganization, nuclear redistribution of actin-remodeling related proteins, and citrullination of actin-ligand and nuclear structural proteins. Ionomycin-stimulated neutrophils rapidly lose their characteristic polymorphic nucleus, and these changes are promptly communicated to the extracellular environment through the secretion of proteins related to immune response. Therefore, our findings revealed key biochemical mediators in the early process that subsequently culminates with nuclear and cell membranes rupture, and extracellular DNA release.


Assuntos
Citrulinação , Armadilhas Extracelulares , Actinas/metabolismo , Ionomicina/farmacologia , Ionomicina/metabolismo , Proteínas Nucleares/metabolismo , Ligantes , Proteômica , Neutrófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Citoesqueleto/metabolismo
7.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177559

RESUMO

Many skeletal muscle diseases such as muscular dystrophy, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and sarcopenia share the dysregulation of calcium (Ca2+) as a key mechanism of disease at a cellular level. Cytosolic concentrations of Ca2+ can signal dysregulation in organelles including the mitochondria, nucleus, and sarcoplasmic reticulum in skeletal muscle. In this work, a treatment is applied to mimic the Ca2+ increase associated with these atrophy-related disease states, and broadband impedance measurements are taken for single cells with and without this treatment using a microfluidic device. The resulting impedance measurements are fitted using a single-shell circuit simulation to show calculated electrical dielectric property contributions based on these Ca2+ changes. From this, similar distributions were seen in the Ca2+ from fluorescence measurements and the distribution of the S-parameter at a single frequency, identifying Ca2+ as the main contributor to the electrical differences being identified. Extracted dielectric parameters also showed different distribution patterns between the untreated and ionomycin-treated groups; however, the overall electrical parameters suggest the impact of Ca2+-induced changes at a wider range of frequencies.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Ionomicina/farmacologia , Ionomicina/metabolismo , Músculo Esquelético/fisiologia , Linhagem Celular , Análise Espectral , Cálcio/metabolismo
8.
Cell Signal ; 107: 110687, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37105507

RESUMO

Signals generated by free fatty acid receptor 2 (FFA2R) can activate the neutrophil NADPH-oxidase without involvement of any orthosteric FFA2R agonist. The initiating signals may be generated by P2Y2R, the receptor for ATP. An FFA2R specific allosteric modulator (PAM; Cmp58) was required for this response and used to investigate the mechanism by which signals generated by ATP/P2Y2R activate an FFA2R dependent process. The P2Y2R induced signal that together with the modulated FFA2R activates neutrophils, was generated downstream of the Gαq containing G protein coupled to P2Y2R. A rise in the cytosolic concentration of ionized calcium ([Ca2+]i) was hypothesized to be the important signal. The hypothesis gained support from the finding that the modulator transferred the neutrophils to a Ca2+sensitive state. The rise in [Ca2+]i induced by the Ca2+ specific ionophore ionomycin, activated the neutrophils provided that an allosteric modulator was bound to FFA2R. The activity of the superoxide generating NADPH-oxidase induced by ionomycin was rapidly terminated and the FFA2Rs could then no longer be activated by the FFA2R agonist propionate or by the signal generated by ATP/P2Y2R. The non-responding state of FFA2R was, however, revoked by a cross-activating allosteric FFA2R modulator. The [Ca2+]i mediated activation of neutrophils with their FFA2Rs allosterically modulated, represent a unique regulatory receptor crosstalk mechanism by which the activation potency of a G protein coupled receptor is controlled by a receptor-crosstalk signaling system operating from the cytosolic side of the plasma membrane.


Assuntos
Cálcio , Neutrófilos , Neutrófilos/metabolismo , Cálcio/metabolismo , Ácidos Graxos não Esterificados/metabolismo , NADP/metabolismo , Ionomicina/metabolismo , Íons/metabolismo , Trifosfato de Adenosina/metabolismo , Oxirredutases , NADPH Oxidases/metabolismo , Superóxidos/metabolismo
9.
J Food Biochem ; 46(12): e14393, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36181394

RESUMO

Diseases such as autoimmune, cancer, neurodegenerative diseases or obesity have a serious impact on the lives of patients all rise from a common point; the immune system. Various in vitro and in vivo studies on regulating the immune system have been made to correct these diseases. As one of the key effector cells of the immune system, T lymphocytes are the focus of many of these studies. In this study, exosomes isolated from a known anti-inflammatory plant, celery, were used to suppress the inflammatory response of T lymphocytes. Celery-derived exosomes (C-Exo) were isolated using an aqueous two-phase isolation method. The size distribution, morphology, particle concentration, and GC-FAME-based lipidomic analysis were determined for the isolated C-Exo. T lymphocytes were stimulated using Phorbol 12-myristate 13-acetate (PMA)/ionomycin, and treated with various doses of C-Exo. T lymphocyte responses were measured using qPCR and capillary Western blots. According to the results, C-Exo suppressed T lymphocytes in a dose-dependent manner in in vitro conditions. These findings show the potential of C-Exo as a therapeutic agent for immune disorders. PRACTICAL APPLICATION: Excessive immune response in the body adversely affects the treatment mechanism and process of many diseases such as autoimmune disorders, neurodegenerative diseases and GDHV. In this preliminary study, the role of extracellular vesicles obtained from celery roots in suppressing this high immune response was investigated. The suppressive effect of celery exosome was observed by creating an immune response in T cells and PBMC cells, which play a leading role in the immune response. The role of these vesicles in immune suppression, obtained from the root part of the celery plant and characterized, was determined by measuring both mRNA, intracellular protein and extracellular cytokine levels. Celery exosome suppressed activated T lymphocyte cells and PBMC cells in a dose-dependent manner. These vesicles, which can be used as an edible, can be used in many areas as immunosuppressants.


Assuntos
Apium , Exossomos , Humanos , Ativação Linfocitária , Exossomos/metabolismo , Ionomicina/metabolismo , Ionomicina/farmacologia , Leucócitos Mononucleares , Acetato de Tetradecanoilforbol/farmacologia , Acetato de Tetradecanoilforbol/metabolismo , Lipidômica , Imunossupressores/farmacologia , Linfócitos T CD4-Positivos/metabolismo
10.
Front Immunol ; 13: 849922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265090

RESUMO

The pig has the potential to become a leading research model for human diseases, pharmacological and transplantation studies. Since there are many similarities between humans and pigs, especially concerning anatomy, physiology and metabolism, there is necessity for a better understanding of the porcine immune system. In adaptive immunity, cytotoxic T lymphocytes (CTLs) are essential for host defense. However, most data on CTLs come from studies in mice, non-human primates and humans, while detailed information about porcine CD8+ CTLs is still sparse. Aim of this study was to analyze transcriptomes of three subsets of porcine CD8ß+ T-cell subsets by using next-generation sequencing technology. Specifically, we described transcriptional profiles of subsets defined by their CD11a/CD27 expression pattern, postulated as naïve (CD8ß+CD27+CD11alow), intermediate differentiated (CD8ß+CD27dimCD11a+), and terminally differentiated cells (CD8ß+CD27-CD11ahigh). Cells were analyzed in ex vivo condition as well as upon in vitro stimulation with concanavalin A (ConA) and PMA/ionomycin. Our analyses show that the highest number of differentially expressed genes was identified between naïve and terminally differentiated CD8+ T-cell subsets, underlining their difference in gene expression signature and respective differentiation stages. Moreover, genes related to early (IL7-R, CCR7, SELL, TCF7, LEF1, BACH2, SATB1, ZEB1 and BCL2) and late (KLRG1, TBX21, PRDM1, CX3CR1, ZEB2, ZNF683, BATF, EZH2 and ID2) stages of CD8+ T-cell differentiation were highly expressed in the naïve and terminally differentiated CD8+ T-cell subsets, respectively. Intermediate differentiated CD8+ T-cell subsets shared a more comparable gene expression profile associated with later stages of T-cell differentiation. Genes associated with cytolytic activity (GNLY, PRF1, GZMB, FASL, IFNG and TNF) were highly expressed in terminally and intermediate differentiated CD8+ T-cell subsets, while naïve CD8+ T cells lacked expression even after in vitro stimulation. Overall, PMA/ionomycin stimulation induced much stronger upregulation of genes compared to stimulation with ConA. Taken together, we provided comprehensive results showing transcriptional profiles of three differentiation stages of porcine CD8+ T-cell subsets. In addition, our study provides a powerful toolbox for the identification of candidate markers to characterize porcine immune cell subsets in more detail.


Assuntos
Linfócitos T CD8-Positivos , Ativação Linfocitária , Animais , Perfilação da Expressão Gênica , Ionomicina/metabolismo , Camundongos , Suínos , Subpopulações de Linfócitos T
11.
Free Radic Res ; 55(11-12): 1037-1047, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34814783

RESUMO

We have previously shown that low-intensity ultrasound (LIUS) can modulate mitochondrial complex I activity and the generation of mitochondrial reactive oxygen species (mtROS) in PC12 cells. This study investigated the mechanism of LIUS by comparing its effect on mitochondrial dysfunction by three different pathways. LIUS was shown to reverse the effects of rotenone, a Q-site blocker, on the complex I inhibition, mtROS generation, and drop of mitochondrial membrane potential (Δψm). In contrast, common antioxidants, N-acetyl cysteine (NAC), and uric acid (UA) blocked rotenone-induced mtROS generation and Δψm drop without recovering the complex I activity, which suggested that Δψm drop is correlated with mtROS generation rather than complex I inhibition itself. Ionomycin, an ionophore for Ca2+, and L-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutathione (GSH) biosynthesis, induced mtROS generation and Δψm drop without inhibiting complex I activity via different mechanisms. LIUS showed no effect on ionomycin-induced Δψm drop but showed partial inhibition on the other effects of ionomycin and BSO. These results suggest that LIUS might have redundant mechanisms but acted mainly on the complex I activity thereby modulating mtROS and Δψm levels. LIUS appeared to act on the Q-module of complex I because it showed no inhibitory effect on Zn2+, an inhibitor of the proton transporting P-module of complex I. Interestingly, pretreatment of LIUS for up to an hour in advance blocked the rotenone effect as efficiently as the co-treatment. Further studies are needed to reveal the exact mechanism of LIUS to inhibit complex I activity.


Assuntos
Mitocôndrias , Rotenona , Animais , Glutationa/metabolismo , Ionomicina/metabolismo , Mitocôndrias/metabolismo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia
12.
Clin Exp Immunol ; 198(1): 1-10, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31206174

RESUMO

A20, a pivotal anti-inflammatory protein, preserves immune homeostasis and regulates prolonged inflammation. A previous study has shown that A20 expression levels are down-regulated in peripheral blood mononuclear cells (PBMCs) from patients with ankylosing spondylitis (AS). However, the precise role of A20 in reducing autoimmune disorders needs to be further elucidated. In this study, A20 expression was found to be preferentially reduced on circulating CD56bright natural killer (NK) cells in patients with AS, and its level was negatively correlated with that of proinflammatory cytokines. Further investigation demonstrated that A20 reduces interferon (IFN)-γ and tumour necrosis factor (TNF)-α production in CD56bright NK cells after stimulation with monokines or phorbol myristate acetate (PMA)/ionomycin(P/I). Furthermore, CD56bright NK cells isolated from AS patients promote TNF-α secretion by autologous monocytes, and increasing the A20 expression level partially attenuates this process. More importantly, decreased A20 expression on circulating CD56bright NK cells is associated with worse disease status in patients with AS. Our findings reveal that A20 participates in the pathogenesis of AS by negatively regulating CD56bright NK cells and that its reduced expression contributes to a worsened disease status in patients with AS.


Assuntos
Antígeno CD56/metabolismo , Células Matadoras Naturais/metabolismo , Espondilite Anquilosante/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Estudos de Casos e Controles , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Interferon gama/metabolismo , Ionomicina/metabolismo , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/fisiologia , Acetato de Tetradecanoilforbol/metabolismo
13.
Front Immunol ; 9: 172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467761

RESUMO

The function of lymphocytes is the key to reflect the immune status of hosts. Evaluation of lymphocyte function is a useful tool to monitor the effect of immunosuppressive treatment and predict the prognosis of immune-mediated diseases (e.g., cancer, autoimmune diseases, and infectious diseases). As the lymphocytes have various activities, such as activation, cytotoxicity, and cytokine secretion, it is a challenge to evaluate the function of lymphocytes in clinical practice and the reference intervals (RIs) of lymphocyte function are rarely reported. The present study showed that the secretion of IFN-γ was well correlated with the activation, chemotaxis, and cytotoxicity of CD4+, CD8+ T cells, and NK cells, which suggests that IFN-γ production can be used as a symbol of lymphocyte function. We therefore created a simple method to detect the function of CD4+, CD8+ T cells, and NK cells simultaneously according to IFN-γ secretion by using whole blood instead of peripheral blood mononuclear cells. We further established the RIs of lymphocyte function (CD4+ T cells: 15.31-34.98%; CD8+ T cells: 26.11-66.59%; NK cells: 39.43-70.79%) in healthy adults. This method showed good reproducibility for the evaluation of lymphocyte function. The established RIs were suitable for use in other centers based on the validation data. We also validated the RIs in individuals with different immune status, and the results showed that kidney transplant recipients and infants (0-1 year) had a decreased lymphocyte function, whereas T cells in systemic lupus erythematosus patients exhibited an opposite trend. Overall, we have successfully established the RIs of lymphocyte function in healthy adults in a simple way, which might be of important clinical value in the diagnosis, monitoring, and prognosis of immune-related diseases.


Assuntos
Interferon gama/biossíntese , Ionomicina/metabolismo , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Ésteres de Forbol/metabolismo , Adulto , Biomarcadores , Feminino , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem
14.
AIDS ; 32(6): 699-708, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29334544

RESUMO

OBJECTIVE: To define the relationships between molecular measures of viral persistence in blood (i.e., plasma viremia, cellular HIV-1 DNA, and mRNA) and expressed or inducible virus from resting CD4 T cells of individuals on suppressive antiretroviral therapy. DESIGN: We compared molecular measurements of HIV-1 in plasma and in uncultured peripheral blood mononuclear cells (PBMCs) to the levels of virions produced by either unstimulated or phorbol myristate acetate and ionomycin (PMA/iono)-stimulated PBMC or resting CD4 T cells from 21 donors on suppressive antiretroviral therapy. RESULTS: We found that unstimulated virion release from cultured resting CD4 T cells was positively correlated with the levels of plasma viremia in vivo (Spearman rho = 0.67, P = 0.0017). We also found that levels of both cellular HIV-1 DNA and unspliced HIV-1 mRNA per million uncultured PBMC were positively correlated with the levels of inducible virion release from both PMA/iono-stimulated PBMC (total HIV-1 DNA: rho = 0.64, P = 0.0017; unspliced HIV-1 RNA: rho = 0.77, P < 0.001) and PMA/iono-stimulated resting CD4 T cells (total HIV-1 DNA: rho = 0.75, P < 0.001; unspliced HIV-1 RNA: rho = 0.75, P < 0.001). CONCLUSION: These results show for the first time that there are strong associations between in-vivo measures of HIV-1 persistence and ex-vivo measures of spontaneous and inducible virus production from cultured PBMC and resting CD4 T cells. Findings from this study provide insight into the biology of HIV-1 persistence and suggest methods to guide the evaluation of clinical strategies to reduce the size of the viral reservoir.


Assuntos
Antirretrovirais/administração & dosagem , Biomarcadores/sangue , DNA Viral/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , RNA Viral/sangue , Resposta Viral Sustentada , Adulto , Idoso , Células Cultivadas , Estudos Transversais , Feminino , Humanos , Ionomicina/metabolismo , Leucócitos Mononucleares/virologia , Masculino , Pessoa de Meia-Idade , Acetato de Tetradecanoilforbol/metabolismo , Ativação Viral/efeitos dos fármacos
15.
Free Radic Res ; 50(11): 1214-1225, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27573976

RESUMO

Reactive oxygen species induce neuronal cell death. However, the detailed mechanisms of cell death have not yet been elucidated. Previously, we reported neurite degeneration before the induction of cell death. Here, we attempted to elucidate the mechanisms of neurite degeneration before the induction of cell death using the neuroblastoma N1E-115 cell line and a time-lapse live cell imaging system. Treatment with the calcium ionophore ionomycin induced cell death and neurite degeneration in a concentration- and time-dependent manner. Treatment with a low concentration of ionomycin immediately produced a significant calcium influx into the intracellular region in N1E-115 cells. After 1-h incubation with ionomycin, the fluorescence emission of MitoSOXTM increased significantly compared to the control. Finally, analysis using a new mitochondrial specific fluorescence dye, MitoPeDPP, indicated that treatment with ionomycin significantly increased the mitochondrial lipid hydroperoxide production in N1E-115 cells. The fluorescence emissions of Fluo-4 AM and MitoPeDPP were detected in the cell soma and neurite regions in ionomycin-treated N1E-115 cells. However, the emissions of neurites were much lower than those of the cell soma. TBARS values of ionomycin-treated cells significantly increased compared to the control. These results indicate that ionomycin induces calcium influx into the intracellular region and reactive oxygen species production in N1E-115 cells. Lipid hydroperoxide production was induced in ionomycin-treated N1E-115 cells. Calcium influx into the intracellular region is a possible activator of neurite degeneration.


Assuntos
Cálcio/metabolismo , Ionomicina/metabolismo , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Animais , Morte Celular , Camundongos , Neuritos/fisiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio
16.
Anesthesiology ; 124(4): 878-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26808630

RESUMO

BACKGROUND: Propofol (2,6-diisopropylphenol) is one of the most frequently used anesthetic agents. One of the main side effects of propofol is to reduce blood pressure, which is thought to occur by inhibiting the release of catecholamines from sympathetic neurons. Here, the authors hypothesized that propofol-induced hypotension is not simply the result of suppression of the release mechanisms for catecholamines. METHODS: The authors simultaneously compared the effects of propofol on the release of norepinephrine triggered by high K-induced depolarization, as well as ionomycin, by using neuroendocrine PC12 cells and synaptosomes. Ionomycin, a Ca ionophore, directly induces Ca influx, thus bypassing the effect of ion channel modulation by propofol. RESULTS: Propofol decreased depolarization (high K)-triggered norepinephrine release, whereas it increased ionomycin-triggered release from both PC12 cells and synaptosomes. The propofol (30 µM)-induced increase in norepinephrine release triggered by ionomycin was dependent on both the presence and the concentration of extracellular Ca (0.3 to 10 mM; n = 6). The enhancement of norepinephrine release by propofol was observed in all tested concentrations of ionomycin (0.1 to 5 µM; n = 6). CONCLUSIONS: Propofol at clinically relevant concentrations promotes the catecholamine release as long as Ca influx is supported. This unexpected finding will allow for a better understanding in preventing propofol-induced hypotension.


Assuntos
Cálcio/metabolismo , Catecolaminas/metabolismo , Hipnóticos e Sedativos/farmacologia , Propofol/farmacologia , Animais , Células Cultivadas , Humanos , Ionomicina/metabolismo , Norepinefrina/metabolismo , Células PC12/metabolismo , Ratos , Sinaptossomos/metabolismo
17.
J Neurosci Methods ; 232: 157-64, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24861423

RESUMO

BACKGROUND: Studies of neuronal regeneration require examination of axons independently of their cell bodies. Several effective strategies have been deployed to compartmentalize long axons of the peripheral nervous system (PNS). However, current strategies to compartmentalize axons of the central nervous system (CNS) may be limited by physical damage to cells during tissue dissociation or slicing, perturbation of three-dimensional tissue architecture, or insufficient axonal tissue for biological analysis. NEW METHODS: We developed a novel mouse neonate whole-hippocampus explant culture system, to probe neuronal regeneration in the central nervous system. This system enables imaging, biological, and biophysical analysis of isolated axons. RESULTS: We validated this model by isolating pure axonal populations. Additionally, cells within the explant were viable and amenable to transfection. We implemented the explant system to characterize axonal outgrowth following crush injury to the explant at the time of harvest, and also a secondary axonal transection injury 2 days post-culture. The initial crush injury delayed axonal outgrowth; however, axotomy did not alter rates of outgrowth up to 1h post-injury, with or without initial tissue crush injury. COMPARISON WITH EXISTING METHODS: Our explant system addresses shortcomings of other strategies developed to compartmentalize CNS axons. It provides a simple method to examine axonal activity and function without requiring additional equipment to slice tissue or segregate axons. CONCLUSION: Our hippocampal explant model may be used to study axonal response to injury. We have demonstrated the feasibility of probing axonal biology, biochemistry, and outgrowth free from confounding effects of neuronal cell bodies.


Assuntos
Axônios/fisiologia , Hipocampo/citologia , Hipocampo/lesões , Regeneração Nervosa/fisiologia , Actinas/genética , Actinas/metabolismo , Animais , Axotomia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Ionomicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Sinais de Localização Nuclear/metabolismo , Técnicas de Cultura de Órgãos , Fosfopiruvato Hidratase/metabolismo , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção
18.
Cell Immunol ; 285(1-2): 149-57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24212062

RESUMO

In schistosomiasis, limited information is available about the role of interleukin-17 (IL-17) in lung, despite the fact that this cytokine plays a crucial role during pro-inflammatory immune responses. In our study, we observed CD4(+)T cells changed after the infection. Furthermore, ELISA and FACS results revealed that Schistosomajaponicum infection could induce a large amount of IL-17 in mouse pulmonary lymphocytes. IL-17-producing cells, including Th17 cells, CD8(+)T (Tc) cells, γδT cells and natural killer T cells, was also associated with the development of lung inflammatory diseases. FACS results indicated that Th17 cell was the main source of IL-17 in the infected pulmonary lymphocytes after phorbol-12-myristate-13-acetate (PMA) and Ionomycin stimulation. Moreover, FACS results revealed that the percentage of Th17 cells continued to increase as over the course of S. japonicum infection. Additionally, cytokines co-expression results demonstrated that Th17 cells could express more IL-4 and IL-5 than IFN-γ. Reducing IL-17 activity by using anti-IL-17 ameliorated the damage and decreased infiltration of inflammatory cells in infected C57BL/6 mouse lungs. Collectively, these results suggest Th17 cells is the major IL-17-producing cells population and IL-17 contributes to pulmonary granulomatous inflammatory during the S. japonicum infection.


Assuntos
Granuloma do Sistema Respiratório/imunologia , Interleucina-17/metabolismo , Schistosoma japonicum/imunologia , Esquistossomose Japônica/imunologia , Células Th17/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Inflamação/imunologia , Interferon gama/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Ionomicina/metabolismo , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Ésteres de Forbol/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Esquistossomose Japônica/patologia
19.
J Interferon Cytokine Res ; 33(5): 261-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23656599

RESUMO

In pulmonary sarcoidosis, differential cytokine production in the lungs could be related to variable prognosis of patients at different stages of disease. Twenty patients with pulmonary sarcoidosis (10 at radiographic stage I and 10 at stages II-IV), as well as 10 age-matched healthy volunteers participated in the study. A 4-colour flow cytometric technique was used to measure interferon-γ (IFN-γ), interleukin (IL)-2, tumour necrosis factor-α (TNF-α), IL-4, and IL-13 production in phorbol myristate acetate (PMA)/ionomycin-stimulated CD4+ and CD8+ T cells from bronchoalveolar lavage fluid (BALF) and peripheral blood (PB) of patients, and PB of control subjects. CD4+ T cells from patients showed higher expression of IFN-γ in BALF than in PB. Significant correlations were observed between the percentages of BALF CD4+ and CD8+ T cells expressing intracellular IFN-γ, IL-2, and TNF-α. Stage I patients had lower percentages of IFN-γ-producing CD4+ and CD8+ T cells, as well as TNF-α-producing CD8+ T cells, in BALF (but not in PB) than stage II-IV patients. A decreased TH1 and TC1 response was demonstrated in BALF of patients at stage I of disease, which could explain their anticipated better prognosis.


Assuntos
Citocinas/análise , Mediadores da Inflamação/metabolismo , Sarcoidose Pulmonar/diagnóstico , Adulto , Idoso , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Separação Celular , Progressão da Doença , Citometria de Fluxo , Humanos , Ionomicina/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Ativação Linfocitária , Pessoa de Meia-Idade , Prognóstico , Radiografia , Acetato de Tetradecanoilforbol/metabolismo , Equilíbrio Th1-Th2 , Adulto Jovem
20.
PLoS One ; 8(2): e56650, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437197

RESUMO

Annexin 7 deficiency has previously been shown to foster suicidal death of erythrocytes or eryptosis, which is triggered by increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) and characterized by cell shrinkage and cell membrane scrambling with subsequent phosphatidylserine exposure at the cell surface. Eryptosis following increase of [Ca(2+)](i) by Ca(2+) ionophore ionomycin, osmotic shock or energy depletion was more pronounced in erythrocytes from annexinA7-deficient mice (anxA7(-/-)) than in erythrocytes from wild type mice (anxA7(+/+)). As phosphatidylserine exposure is considered to mediate adhesion of erythrocytes to the vascular wall, the present study explored adhesion of erythrocytes from anx7(-/-) and anx7(+/+)-mice following increase of [Ca(2+)](i) by Ca(2+) ionophore ionomycin (1 µM for 30 min), hyperosmotic shock (addition of 550 mM sucrose for 2 hours) or energy depletion (removal of glucose for 12 hours). Phosphatidylserine exposing erythrocytes were identified by annexin V binding, cell volume estimated from forward scatter in FACS analysis and adhesion to human umbilical vein endothelial cells (HUVEC) utilizing a flow chamber. As a result, ionomycin, sucrose addition and glucose removal all triggered phosphatidylserine-exposure, decreased forward scatter and enhanced adhesion of erythrocytes to human umbilical vein endothelial cells (HUVEC), effects significantly more pronounced in anx7(-/-) than in anx7(+/+)-erythrocytes. Following ischemia, morphological renal injury was significantly higher in anx7(-/-) than in anx7(+/+)-mice. The present observations demonstrate that enhanced eryptosis of annexin7 deficient cells is paralleled by increased adhesion of erythrocytes to the vascular wall, an effect, which may impact on microcirculation during ischemia.


Assuntos
Anexina A7/metabolismo , Adesão Celular/fisiologia , Células Endoteliais/metabolismo , Eritrócitos/metabolismo , Glucose/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Anexina A5/metabolismo , Anexina A7/deficiência , Anexina A7/genética , Adesão Celular/genética , Células Endoteliais/citologia , Eritrócitos/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Ionomicina/metabolismo , Camundongos , Camundongos Knockout , Pressão Osmótica , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...